Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Auton Neurosci ; 252: 103159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428324

RESUMO

In the field of psychiatry, biological markers are rarely, if ever, used in the diagnosis of mental health disorders. Clinicians rely primarily on patient histories and behavioral symptoms to identify specific psychopathologies, which makes diagnosis highly subjective. Moreover, therapies for mental health disorders are aimed specifically at attenuating behavioral manifestations, which overlooks the pathophysiological indices of the disease. This is highly evident in posttraumatic stress disorder (PTSD) where inflammation and immune system perturbations are becoming increasingly described. Further, patients with PTSD possess significantly elevated risks of developing comorbid inflammatory diseases such as autoimmune and cardiovascular diseases, which are likely linked (though not fully proven) to the apparent dysregulation of the immune system after psychological trauma. To date, there is little to no evidence that demonstrates current PTSD therapies are able to reverse the increased risk for psychological trauma-induced inflammatory diseases, which suggests the behavioral and somatic consequences of PTSD may not be tightly coupled. This observation provides an opportunity to explore unique mechanisms outside of the brain that contribute to the long-term pathology of PTSD. Herein, we provide an overview of neuroimmune mechanisms, describe what is known regarding innate and adaptive immunity in PTSD, and suggest new directions that are needed to advance the understanding, diagnosis, and treatment of PTSD moving forward.


Assuntos
Doenças Cardiovasculares , Transtornos de Estresse Pós-Traumáticos , Humanos , Encéfalo , Sistema Imunitário , Inflamação
2.
Biol Psychiatry Glob Open Sci ; 3(4): 919-929, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881565

RESUMO

Background: Posttraumatic stress disorder, a consequence of psychological trauma, is associated with increased inflammation and an elevated risk of developing comorbid inflammatory diseases. However, the mechanistic link between this mental health disorder and inflammation remains elusive. We previously found that S100a8 and S100a9 messenger RNA, genes that encode the protein calprotectin, were significantly upregulated in T lymphocytes and positively correlated with inflammatory gene expression and the mitochondrial redox environment in these cells. Therefore, we hypothesized that genetic deletion of calprotectin would attenuate the inflammatory and redox phenotype displayed after psychological trauma. Methods: We used a preclinical mouse model of posttraumatic stress disorder known as repeated social defeat stress (RSDS) combined with pharmacological and genetic manipulation of S100a9 (which functionally eliminates calprotectin). A total of 186 animals (93 control, 93 RSDS) were used in these studies. Results: Unexpectedly, we observed worsening of behavioral pathology, inflammation, and the mitochondrial redox environment in mice after RSDS compared with wild-type animals. Furthermore, loss of calprotectin significantly enhanced the metabolic demand on T lymphocytes, suggesting that this protein may play an undescribed role in mitochondrial regulation. This was further supported by single-cell RNA sequencing analysis demonstrating that RSDS and loss of S100a9 primarily altered genes associated with mitochondrial function and oxidative phosphorylation. Conclusions: These data demonstrate that the loss of calprotectin potentiates the RSDS-induced phenotype, which suggests that its observed upregulation after psychological trauma may provide previously unexplored protective functions.

3.
Biol Psychiatry Glob Open Sci ; 3(4): 824-836, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881577

RESUMO

Background: Posttraumatic stress disorder (PTSD) is a mental health condition triggered by exposure to traumatic events in an individual's life. Patients with PTSD are also at a higher risk for comorbidities. However, it is not well understood how PTSD affects human health and/or promotes the risk for comorbidities. Nevertheless, patients with PTSD harbor a proinflammatory milieu and dysbiotic gut microbiota. Gut barrier integrity helps to maintain normal gut homeostasis and its dysregulation promotes gut dysbiosis and inflammation. Methods: We used a mouse model of repeated social defeat stress (RSDS), a preclinical model of PTSD. Behavioral studies, metagenomics analysis of the microbiome, gut permeability assay (on mouse colon, using an Ussing chamber), immunoblotting, and immunohistochemical analyses were performed. Polarized intestinal epithelial cells and 3-dimensional crypt cultures were used for mechanistic analysis. Results: The RSDS mice harbor a heightened proinflammatory gut environment and microbiota dysbiosis. The RSDS mice further showed significant dysregulation of gut barrier functions, including transepithelial electrical resistance, mucin homeostasis, and antimicrobial responses. RSDS mice also showed a specific increase in intestinal expression of claudin-2, a tight junction protein, and epinephrine, a stress-induced neurotransmitter. Treating intestinal epithelial cells or 3-dimensional cultured crypts with norepinephrine or intestinal luminal contents (fecal contents) upregulated claudin-2 expression and inhibited transepithelial electrical resistance. Conclusions: Traumatic stress induces dysregulation of gut barrier functions, which may underlie the observed gut microbiota changes and proinflammatory gut milieu, all of which may have an interdependent effect on the health and increased risk of comorbidities in patients with PTSD.

4.
Brain Behav Immun Health ; 34: 100690, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37791319

RESUMO

Psychosocial stress has been shown to prime peripheral innate immune cells, which take on hyper-inflammatory phenotypes and are implicated in depressive-like behavior in mouse models. However, the impact of stress on cellular metabolic states that are thought to fuel inflammatory phenotypes in immune cells are unknown. Using single cell RNA-sequencing, we investigated mRNA enrichment of immunometabolic pathways in innate immune cells of the spleen in mice subjected to repeated social defeat stress (RSDS) or no stress (NS). RSDS mice displayed a significant increase in the number of splenic macrophages and granulocytes (p < 0.05) compared to NS littermates. RSDS-upregulated genes in macrophages, monocytes, and granulocytes significantly enriched immunometabolic pathways thought to play a role in myeloid-driven inflammation (glycolysis, HIF-1 signaling, MTORC1 signaling) as well as pathways related to oxidative phosphorylation (OXPHOS) and oxidative stress (p < 0.05 and FDR<0.1). These results suggest that the metabolic enhancement reflected by upregulation of glycolytic and OXPHOS pathways may be important for cellular proliferation of splenic macrophages and granulocytes following repeated stress exposure. A better understanding of these intracellular metabolic mechanisms may ultimately help develop novel strategies to reverse the impact of stress and associated peripheral immune changes on the brain and behavior.

5.
Brain Behav Immun ; 114: 430-437, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716379

RESUMO

INTRODUCTION: Inflammatory processes help protect the body from potential threats such as bacterial or viral invasions. However, when such inflammatory processes become chronically engaged, synaptic impairments and neuronal cell death may occur. In particular, persistently high levels of C-reactive protein (CRP) and tumor necrosis factor-alpha (TNF-α) have been linked to deficits in cognition and several psychiatric disorders. Higher-order cognitive processes such as fluid intelligence (Gf) are thought to be particularly vulnerable to persistent inflammation. Herein, we investigated the relationship between elevated CRP and TNF-α and the neural oscillatory dynamics serving Gf. METHODS: Seventy adults between the ages of 20-66 years (Mean = 45.17 years, SD = 16.29, 21.4% female) completed an abstract reasoning task that probes Gf during magnetoencephalography (MEG) and provided a blood sample for inflammatory marker analysis. MEG data were imaged in the time-frequency domain, and whole-brain regressions were conducted using each individual's plasma CRP and TNF-α concentrations per oscillatory response, controlling for age, BMI, and education. RESULTS: CRP and TNF-α levels were significantly associated with region-specific neural oscillatory responses. In particular, elevated CRP concentrations were associated with altered gamma activity in the right inferior frontal gyrus and right cerebellum. In contrast, elevated TNF-α levels scaled with alpha/beta oscillations in the left anterior cingulate and left middle temporal, and gamma activity in the left intraparietal sulcus. DISCUSSION: Elevated inflammatory markers such as CRP and TNF-α were associated with aberrant neural oscillations in regions important for Gf. Linking inflammatory markers with regional neural oscillations may hold promise in identifying mechanisms of cognitive and psychiatric disorders.


Assuntos
Encéfalo , Fator de Necrose Tumoral alfa , Adulto , Humanos , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Masculino , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Cognição , Inteligência/fisiologia , Proteína C-Reativa
6.
Front Physiol ; 14: 1130861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007993

RESUMO

Post-traumatic stress disorder (PTSD) is a mental health disorder that arises after experiencing or witnessing a traumatic event. Despite affecting around 7% of the population, there are currently no definitive biological signatures or biomarkers used in the diagnosis of PTSD. Thus, the search for clinically relevant and reproducible biomarkers has been a major focus of the field. With significant advances of large-scale multi-omic studies that include genomic, proteomic, and metabolomic data, promising findings have been made, but the field still has fallen short. Amongst the possible biomarkers examined, one area is often overlooked, understudied, or inappropriately investigated: the field of redox biology. Redox molecules are free radical and/or reactive species that are generated as a consequence of the necessity of electron movement for life. These reactive molecules, too, are essential for life, but in excess are denoted as "oxidative stress" and often associated with many diseases. The few studies that have examined redox biology parameters have often utilized outdated and nonspecific methods, as well as have reported confounding results, which has made it difficult to conclude the role for redox in PTSD. Herein, we provide a foundation of how redox biology may underlie diseases like PTSD, critically examine redox studies of PTSD, and provide future directions the field can implement to enhance standardization, reproducibility, and accuracy of redox assessments for the use of diagnosis, prognosis, and therapy of this debilitating mental health disorder.

7.
Brain Behav Immun ; 104: 18-28, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35580792

RESUMO

Posttraumatic stress disorder (PTSD) is a debilitating psychiatric disorder which results in deleterious changes to psychological and physical health. Patients with PTSD are especially susceptible to life-threatening co-morbid inflammation-driven pathologies, such as autoimmunity, while also demonstrating increased T-helper 17 (TH17) lymphocyte-driven inflammation. While the exact mechanism of this increased inflammation is unknown, overactivity of the sympathetic nervous system is a hallmark of PTSD. Neurotransmitters of the sympathetic nervous system (i.e., catecholamines) can alter T-lymphocyte function, which we have previously demonstrated to be partially mitochondrial redox-mediated. Furthermore, we have previously elucidated that T-lymphocytes generate their own catecholamines, and strong associations exist between tyrosine hydroxylase (TH; the rate-limiting enzyme in the synthesis of catecholamines) and pro-inflammatory interleukin 17A (IL-17A) expression within purified T-lymphocytes in a rodent model of psychological trauma. Therefore, we hypothesized that T-lymphocyte-generated catecholamines drive TH17 T-lymphocyte polarization through a mitochondrial superoxide-dependent mechanism during psychological trauma. To test this, T-lymphocyte-specific TH knockout mice (THT-KO) were subjected to psychological trauma utilizing repeated social defeat stress (RSDS). RSDS characteristically increased tumor necrosis factor-α (TNFα), IL-6, IL-17A, and IL-22, however, IL-17A and IL-22 (TH17 produced cytokines) were selectively attenuated in circulation and in T-lymphocytes of THT-KO animals. When activated ex vivo, secretion of IL-17A and IL-22 by THT-KO T-lymphocytes was also found to be reduced, but could be partially rescued with supplementation of norepinephrine specifically. Interestingly, THT-KO T-lymphocytes were still able to polarize to TH17 under exogenous polarizing conditions. Last, contrary to our hypothesis, we found RSDS-exposed THT-KO T-lymphocytes still displayed elevated mitochondrial superoxide, suggesting increased mitochondrial superoxide is upstream of T-lymphocyte TH induction, activity, and TH17 regulation. Overall, these data demonstrate TH in T-lymphocytes plays a critical role in RSDS-induced TH17 T-lymphocytes and offer a previously undescribed regulator of inflammation in RSDS.


Assuntos
Interleucina-17 , Tirosina 3-Mono-Oxigenase , Animais , Camundongos , Humanos , Interleucina-17/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Derrota Social , Superóxidos/metabolismo , Células Th17/metabolismo , Catecolaminas/metabolismo , Inflamação/metabolismo
8.
Clin Exp Metastasis ; 39(4): 641-659, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35604506

RESUMO

Bone metastatic prostate cancer (BM-PCa) remains one of the most difficult cancers to treat due to the complex interactions of cancer and stromal cells. We previously showed that bone marrow neutrophils elicit an anti-tumor immune response against BM-PCa. Further, we demonstrated that BM-PCa induces neutrophil oxidative burst, which has previously been identified to promote primary tumor growth of other cancers, and a goal of this study was to define the importance of neutrophil oxidative burst in BM-PCa. To do this, we first examined the impact of depletion of reactive oxygen species (ROS), via systemic deletion of the main source of ROS in phagocytes, NADPH oxidase (Nox)2, which we found to suppress prostate tumor growth in bone. Further, using pharmacologic ROS inhibitors and Nox2-null neutrophils, we found that ROS depletion specifically suppresses growth of androgen-insensitive prostate cancer cells. Upon closer examination using bulk RNA sequencing analysis, we identified that metastatic prostate cancer induces neutrophil transcriptomic changes that activates pathways associated with response to oxidative stress. In tandem, prostate cancer cells resist neutrophil anti-tumor response via extracellular (i.e., regulation of neutrophils) and intracellular alterations of glutathione synthesis, the most potent cellular antioxidant. These findings demonstrate that BM-PCa thrive under oxidative stress conditions and such that regulation of ROS and glutathione programming could be leveraged for targeting of BM-PCa progression.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Neoplasias Ósseas/secundário , Glutationa/metabolismo , Humanos , Masculino , Neutrófilos/patologia , Estresse Oxidativo , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo
9.
Bioorg Med Chem Lett ; 65: 128713, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367592

RESUMO

The IKK-NFκB complex is a key signaling node that facilitates activation of gene expression in response to extracellular signals. The kinase IKKß and the transcription factor RELA have been targeted by covalent modifiers that bind to surface exposed cysteine residues. A common feature in well characterized covalent modifiers of RELA and IKKß is the Michael acceptor containing α-methylene-γ-butyrolactone functionality. Through synthesis and evaluation of a focused set of α-methylene-γ-butyrolactone containing spirocyclic dimers (SpiDs) we identified SpiD3 as an anticancer agent with low nanomolar potency. Using cell-free and cell-based studies we show that SpiD3 is a covalent modifier that generates stable RELA containing high molecular weight complexes. SpiD3 inhibits TNFα-induced IκBα phosphorylation resulting in the blockade of RELA nuclear translocation. SpiD3 induces apoptosis, inhibits colony formation and migration of cancer cells. The NCI-60 cell line screen revealed that SpiD3 potently inhibits growth of leukemia cell lines, making it a suitable pre-therapeutic lead for hematological malignancies.


Assuntos
Antineoplásicos , Isatina , 4-Butirolactona/análogos & derivados , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Quinase I-kappa B/metabolismo , Isatina/farmacologia , NF-kappa B/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
10.
J Matern Fetal Neonatal Med ; 35(25): 5513-5519, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33645396

RESUMO

BACKGROUND: Dysregulation of inflammatory processes is linked to perinatal complications yet a comprehensive description of cytokine levels throughout the perinatal period is lacking. We report prospective, serial levels of 29 unique cytokines measured in maternal blood during pregnancy, in the cord blood at birth, and in the neonatal blood. METHODS: Pregnant women (n = 140) for recruited from a Midwest tertiary medical center. Blood was obtained at five timepoints: 12-20 weeks, 24-28 weeks, and at labor in the women, umbilical cord at birth, 24-72 h in the newborn. Cytokine levels were analyzed using an electrochemiluminescence-based immunoassay. RESULTS: Levels for 29 cytokines were measured. The data were separated into two groups: pregnancies with (n = 82) and without major complications (n = 53) (preterm birth, preeclampsia, diabetes mellitus). Eighteen cytokines showed significant changes over time (p < .002). The majority of the cytokines were highest in the newborn. No differences in cytokine levels between complication groups were noted at any timepoint. CONCLUSIONS: This is the first known study to report prospective, serial cytokine levels throughout the perinatal period for pregnancies with/without complications. No differences in maternal cytokine levels between those with/without complications were detected; studies with a larger sample size would be needed to validate our current findings. Results also suggest cytokine dysregulation may be more localized to the placenta making it difficult to measure and predict during pregnancy using maternal systemic blood specimens.


Assuntos
Pré-Eclâmpsia , Nascimento Prematuro , Gravidez , Recém-Nascido , Feminino , Humanos , Resultado da Gravidez , Citocinas , Estudos Prospectivos
11.
EBioMedicine ; 70: 103487, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34280780

RESUMO

BACKGROUND: Despite effective combination antiretroviral therapy (cART), people living with HIV (PLWH) remain at risk for developing neurocognitive impairment primarily due to systemic inflammation that persists despite virologic suppression, albeit the mechanisms underlying such inflammation are poorly understood. METHODS: Herein, we evaluate the predictive capacity of the mitochondrial redox environment on circulating neuro- and T-lymphocyte-related inflammation and concomitant cognitive function in 40 virally-suppressed PLWH and 40 demographically-matched controls using structural equation modeling. We used state-of-the-art systems biology approaches including Seahorse Analyzer of mitochondrial function, electron paramagnetic resonance (EPR) spectroscopy to measure superoxide levels, antioxidant activity assays, and Meso Scale multiplex technology to quantify inflammatory proteins in the periphery. FINDINGS: We observed disturbances in mitochondrial function and the redox environment in PLWH compared to controls, which included reduced mitochondrial capacity (t(76) = -1.85, p = 0.034, 95% CI: -∞,-0.13), elevated levels of superoxide (t(75) = 1.70, p = 0.047, 95% CI: 8.01 E 3, ∞) and alterations in antioxidant defense mechanisms (t(74) = 1.76, p = 0.041, 95% CI: -710.92, ∞). Interestingly, alterations in both superoxide- and hydrogen peroxide-sensitive redox environments were differentially predictive of neuro-, but not T-lymphocyte-related inflammatory profiles in PLWH and controls, respectively (ps < 0.026). Finally, when accounting for superoxide-sensitive redox pathways, neuroinflammatory profiles significantly predicted domain-specific cognitive function across our sample (ß = -0.24, p = 0.034, 95% CI: -0.09, -0.004 for attention; ß = -0.26, p = 0.018, 95% CI: -0.10, -0.01 for premorbid function). INTERPRETATION: Our results suggest that precursors to neuroinflammation apparent in PLWH (i.e., mitochondrial function and redox environments) predict overall functionality and cognitive dysfunction and importantly, may serve as a proxy for characterizing inflammation-related functional decline in the future. FUNDING: National Institute of Mental Health, National Institute for Neurological Disorders and Stroke, National Institute on Drug Abuse, National Science Foundation.


Assuntos
Complexo AIDS Demência/sangue , Estresse Oxidativo , Complexo AIDS Demência/diagnóstico , Adulto , Idoso , Biomarcadores/sangue , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Superóxidos/metabolismo , Linfócitos T/metabolismo
13.
Biol Psychiatry Glob Open Sci ; 1(3): 190-200, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35330608

RESUMO

Background: Post-traumatic stress disorder (PTSD) is a devastating psychological disorder. Patients with PTSD canonically demonstrate an increased risk for inflammatory diseases, as well as increased sympathetic tone and norepinephrine (NE) outflow. Yet, the exact etiology and causal nature of these physiologic changes remain unclear. Previously, we demonstrated that exogenous NE alters mitochondrial superoxide in T-lymphocytes to produce a pro-inflammatory T-helper 17 (TH17) phenotype, and observed similar TH17 polarization in a preclinical model of PTSD. Therefore, we hypothesized sympathetic-driven neuroimmune interactions could mediate psychological trauma-induced T-lymphocyte inflammation. Methods: Repeated social defeat stress (RSDS) is a preclinical murine model that recapitulates the behavioral, autonomic, and inflammatory aspects of PTSD. Targeted splenic denervation (Dnx) was performed to deduce the contribution of splenic sympathetic nerves to RSDS-induced inflammation. Eighty-five C57BL/6J mice underwent Dnx or sham-operation, followed by RSDS or control paradigms. Animals were assessed for behavioral, autonomic, inflammatory, and redox profiles. Results: Dnx did not alter the antisocial or anxiety-like behavior induced by RSDS. In circulation, RSDS Dnx animals exhibited diminished levels of T-lymphocyte-specific cytokines (IL-2, IL-17A, and IL-22) compared to intact animals, whereas other non-specific inflammatory cytokines (e.g., IL-6, TNF-α, and IL-10) were unaffected by Dnx. Importantly, Dnx specifically ameliorated the increases in RSDS-induced T-lymphocyte mitochondrial superoxide, TH17 polarization, and pro-inflammatory gene expression with minimal impact to non-T-lymphocyte immune populations. Conclusions: Overall, our data suggest that sympathetic nerves regulate RSDS-induced splenic T-lymphocyte inflammation, but play less of a role in the behavioral and non-T-lymphocyte inflammatory phenotypes induced by this psychological trauma paradigm.

14.
Antioxid Redox Signal ; 34(12): 915-935, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32237890

RESUMO

Significance: T lymphocytes, as part of the adaptive immune system, possess the ability to activate and function in extreme cellular microenvironments, which requires these cells to remain highly malleable. One mechanism in which T lymphocytes achieve this adaptability is by responding to cues from both reactive oxygen and nitrogen species, as well as metabolic flux, which together fine-tune the functional fate of these adaptive immune cells. Recent Advances: To date, examinations of the redox and metabolic effects on T lymphocytes have primarily investigated these biological processes as separate entities. Given that the redox and metabolic environments possess significant overlaps of pathways and molecular species, it is inevitable that perturbations in one environment affect the other. Recent consideration of this redox-metabolic couple has demonstrated the strong link and regulatory consequences of these two systems in T lymphocytes. Critical Issues: The redox and metabolic control of T lymphocytes is essential to prevent dysregulated inflammation, which has been observed in cardiovascular diseases such as hypertension. The role of the adaptive immune system in hypertension has been extensively investigated, but the understanding of how the redox and metabolic environments control T lymphocytes in this disease remains unclear. Future Directions: Herein, we provide a discussion of the redox and metabolic control of T lymphocytes as separate entities, as well as coupled to one another, to regulate adaptive immunity. While investigations examining this pair together in T lymphocytes are sparse, we speculate that T lymphocyte destiny is shaped by the redox-metabolic couple. In contrast, disrupting this duo may have inflammatory consequences such as hypertension.


Assuntos
Hipertensão/metabolismo , Inflamação/metabolismo , Estresse Oxidativo/genética , Linfócitos T/metabolismo , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Humanos , Hipertensão/genética , Hipertensão/patologia , Inflamação/genética , Inflamação/patologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Linfócitos T/patologia
16.
Cell Signal ; 77: 109816, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122000

RESUMO

Neutrophils are key effector cells of the innate immune system, serving as a first line of defense in the response to injury and playing essential roles in the wound healing process. Following myocardial infarction (MI), neutrophils infiltrate into the infarct region to propagate inflammation and begin the initial phase of cardiac wound repair. Pro-inflammatory neutrophils release proteases to degrade extracellular matrix (ECM), a necessary step for the removal of necrotic myocytes as a prelude for scar formation. Neutrophils transition their phenotype over time to regulate MI inflammation resolution and stabilize scar formation. Neutrophils contribute to the evolution from inflammation to resolution and scar formation by serving anti-inflammatory and repair functions. As anti-inflammatory cells, neutrophils contribute ECM proteins during scar formation, in particular fibronectin, galectin-3, and vimentin. The diverse and polarizing functions that contribute to MI wound repair make this innate immune cell a viable target to improve MI outcomes. Thus, understanding the signaling involved in neutrophil physiology in the context of MI may help to identify novel therapeutic targets.


Assuntos
Infarto do Miocárdio/patologia , Neutrófilos/metabolismo , Cicatrização , Quimiocina CXCL12/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Infiltração de Neutrófilos , Neutrófilos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
17.
Brain Behav Immun ; 90: 279-285, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32890698

RESUMO

Post-traumatic stress disorder (PTSD) is a psychiatric illness that results in an increased risk for a variety of inflammatory diseases. The exact etiology of this increased risk is unknown, and thus several animal models have been developed to investigate the neuroimmune interactions of PTSD. Repeated social defeat stress (RSDS) is an established preclinical model of psychological trauma that recapitulates certain behavioral and inflammatory aspects of human PTSD. Furthermore, RSDS has been utilized to subgroup animals into susceptible and resilient populations based on one specific behavioral phenotype (i.e., social interaction). Herein, we conducted an extensive investigation of circulating inflammatory proteins after RSDS and found significant elevations in various cytokines and chemokines after exposure to RSDS. When categorizing animals into either susceptible or resilient populations based on social interaction, we found no inflammatory or other behavioral differences between these subgroups. Furthermore, correlative analyses found no significant correlation between social interaction parameters and inflammation. In contrast, parameters from the elevated zero maze (EZM) demonstrated significant associations and clustering to five circulating cytokines. When animals were subdivided into susceptible and resilient populations solely based upon combined EZM performance, significant inflammatory differences were evident between these groups. Strikingly, these circulating inflammatory proteins displayed a stronger predictive ability of EZM performance compared to social interaction test performance. These findings provide new insights into inflammatory markers associated with RSDS, and the utility of EZM to effectively group RSDS-exposed mice into populations with differential levels of peripheral inflammation.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Estresse Psicológico , Animais , Comportamento Animal , Modelos Animais de Doenças , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Comportamento Social , Derrota Social
18.
Biol Res Nurs ; 22(4): 514-519, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32515205

RESUMO

The pathobiology of cancer-related fatigue (CRF) remains elusive, hindering the development of targeted treatments. Radiation therapy (RT), a common treatment for men with prostate cancer, induces cell damage through the generation of free radicals and oxidative stress. We hypothesized that disruption in cellular responses to this surge of nonphysiological oxidative stress might contribute to CRF in men with prostate cancer treated with RT. We evaluated the potential role of three cell damage pathways (apoptosis, autophagy, necrosis) and oxidative stress in CRF in men with prostate cancer receiving RT. Fatigue was measured by the Functional Assessment of Cancer Therapy-Fatigue (FACT-F) questionnaire. Gene expression was measured in whole blood using RT2 profiler™ PCR arrays. Data were collected at two time points: either baseline or Day 1 of treatment (T1) and completion of treatment (T2). Participants were grouped into either the fatigued or nonfatigued phenotype at T2 using the recommended FACT-F cut-off score for clinical significance. We observed significant upregulation of seven genes related to three cell damage pathways in the fatigued group from T1 to T2 and no significant changes in the nonfatigued group. We also observed significant downregulation of two genes related to oxidative stress in the fatigued group compared to the nonfatigued group at T2. These collective results provide preliminary evidence that cell damage might be upregulated in the CRF phenotype. Validation of these findings using a larger and more diverse sample is warranted.


Assuntos
Apoptose , Morte Celular Autofágica , Fadiga/etiologia , Fadiga/fisiopatologia , Necrose , Estresse Oxidativo , Neoplasias da Próstata/complicações , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/fisiopatologia , Inquéritos e Questionários
19.
Cancer Immunol Immunother ; 69(6): 1113-1130, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32114681

RESUMO

Bone metastatic prostate cancer (BM-PCa) significantly reduces overall patient survival and is currently incurable. Current standard immunotherapy showed promising results for PCa patients with metastatic, but less advanced, disease (i.e., fewer than 20 bone lesions) suggesting that PCa growth in bone contributes to response to immunotherapy. We found that: (1) PCa stimulates recruitment of neutrophils, the most abundant immune cell in bone, and (2) that neutrophils heavily infiltrate regions of prostate tumor in bone of BM-PCa patients. Based on these findings, we examined the impact of direct neutrophil-prostate cancer interactions on prostate cancer growth. Bone marrow neutrophils directly induced apoptosis of PCa in vitro and in vivo, such that neutrophil depletion in bone metastasis models enhanced BM-PCa growth. Neutrophil-mediated PCa killing was found to be mediated by suppression of STAT5, a transcription factor shown to promote PCa progression. However, as the tumor progressed in bone over time, neutrophils from late-stage bone tumors failed to elicit cytotoxic effector responses to PCa. These findings are the first to demonstrate that bone-resident neutrophils inhibit PCa and that BM-PCa are able to progress via evasion of neutrophil-mediated killing. Enhancing neutrophil cytotoxicity in bone may present a novel therapeutic option for bone metastatic prostate cancer.


Assuntos
Neoplasias Ósseas/secundário , Neutrófilos/metabolismo , Neoplasias da Próstata/sangue , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Humanos , Masculino , Camundongos , Neutrófilos/citologia , Neoplasias da Próstata/complicações , Neoplasias da Próstata/patologia
20.
Nurs Res ; 69(3): 244-248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31917737

RESUMO

BACKGROUND: A known relationship exists between oxidative stress and preterm birth (PTB). However, few studies have measured oxidative stress prospectively in early or midpregnancy, and no studies have used electron paramagnetic resonance (EPR) spectroscopy prospectively to predict PTB. OBJECTIVE: The purpose of this study was to identify predictive relationships between antioxidants and reactive oxygen species (ROS), specifically, superoxide (O2), peroxynitrite (OONO), and hydroxyl radical (OH), using EPR spectroscopy, measured between 12 and 20 weeks of gestation and compare with the incidence of PTB. METHODS: Blood was obtained from pregnant women (n = 140) recruited from a tertiary perinatal center. Whole blood was analyzed directly for ROS, O2, OONO, and OH using EPR spectroscopy. Red blood cell lysate was used to measure antioxidants. PTB was defined as parturition at <37 weeks of gestation. RESULTS: No differences were found between ROS, O2, OONO, or OH with the incidence of PTB. Catalase activity, glutathione, and reduced/oxidized glutathione ratio were significantly lower with PTB. Logistic regression suggests decreased catalase activity in pregnant women is associated with increased odds of delivering prematurely. DISCUSSION: We prospectively compared antioxidants and specific ROS using EPR spectroscopy in pregnant women between 12 and 20 weeks of gestation with the incidence of PTB. Results are minimal but do suggest that antioxidants-specifically decreased catalase activity-in early pregnancy may be associated with PTB; however, these findings should be cautiously interpreted and may not have clinical significance.


Assuntos
Idade Gestacional , Estresse Oxidativo , Nascimento Prematuro/epidemiologia , Antioxidantes/análise , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Humanos , Gravidez , Estudos Prospectivos , Espécies Reativas de Oxigênio/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...